Inserisci un problema...
Algebra lineare Esempi
Passaggio 1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 3
Passaggio 3.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 3.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 3.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 5
Passaggio 5.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 5.2
Dividi per ciascun termine in e semplifica.
Passaggio 5.2.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 5.2.2
Semplifica il lato sinistro.
Passaggio 5.2.2.1
Elimina il fattore comune di .
Passaggio 5.2.2.1.1
Elimina il fattore comune.
Passaggio 5.2.2.1.2
Dividi per .
Passaggio 5.2.3
Semplifica il lato destro.
Passaggio 5.2.3.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 5.3
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Passaggio 5.4
Semplifica l'equazione.
Passaggio 5.4.1
Semplifica il lato sinistro.
Passaggio 5.4.1.1
Estrai i termini dal radicale.
Passaggio 5.4.2
Semplifica il lato destro.
Passaggio 5.4.2.1
Semplifica .
Passaggio 5.4.2.1.1
Riscrivi come .
Passaggio 5.4.2.1.2
Moltiplica per .
Passaggio 5.4.2.1.3
Combina e semplifica il denominatore.
Passaggio 5.4.2.1.3.1
Moltiplica per .
Passaggio 5.4.2.1.3.2
Eleva alla potenza di .
Passaggio 5.4.2.1.3.3
Eleva alla potenza di .
Passaggio 5.4.2.1.3.4
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 5.4.2.1.3.5
Somma e .
Passaggio 5.4.2.1.3.6
Riscrivi come .
Passaggio 5.4.2.1.3.6.1
Usa per riscrivere come .
Passaggio 5.4.2.1.3.6.2
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 5.4.2.1.3.6.3
e .
Passaggio 5.4.2.1.3.6.4
Elimina il fattore comune di .
Passaggio 5.4.2.1.3.6.4.1
Elimina il fattore comune.
Passaggio 5.4.2.1.3.6.4.2
Riscrivi l'espressione.
Passaggio 5.4.2.1.3.6.5
Calcola l'esponente.
Passaggio 5.4.2.1.4
Semplifica il numeratore.
Passaggio 5.4.2.1.4.1
Combina usando la regola del prodotto per i radicali.
Passaggio 5.4.2.1.4.2
Moltiplica per .
Passaggio 5.5
Scrivi a tratti.
Passaggio 5.5.1
Per individuare l'intervallo per la prima parte, trova dove l'interno del valore assoluto è non negativo.
Passaggio 5.5.2
Nella parte in cui è non negativo, rimuovi il valore assoluto.
Passaggio 5.5.3
Per individuare l'intervallo per la seconda parte, trova dove l'interno del valore assoluto è negativo.
Passaggio 5.5.4
Nella parte in cui è negativo, rimuovi il valore assoluto e moltiplica per .
Passaggio 5.5.5
Scrivi a tratti.
Passaggio 5.6
Trova l'intersezione di e .
Passaggio 5.7
Risolvi dove .
Passaggio 5.7.1
Dividi per ciascun termine in e semplifica.
Passaggio 5.7.1.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 5.7.1.2
Semplifica il lato sinistro.
Passaggio 5.7.1.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 5.7.1.2.2
Dividi per .
Passaggio 5.7.1.3
Semplifica il lato destro.
Passaggio 5.7.1.3.1
Sposta quello negativo dal denominatore di .
Passaggio 5.7.1.3.2
Riscrivi come .
Passaggio 5.7.2
Trova l'intersezione di e .
Passaggio 5.8
Trova l'unione delle soluzioni.
Passaggio 6
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 7